Khía cạnh đại số trừu tượng và tổng quát hóa Ma trận (toán học)

Các nhà toán học đã tổng quát hóa ma trận theo một số cách khác nhau. Đại số trừu tượng sử dụng ma trận với các phần tử là những dạng tổng quát hơn như là trường hay thậm chí là vành, trong khi đại số tuyến tính mã hóa các tính chất của ma trận thành khái niệm các ánh xạ tuyến tính. Có thể coi ma trận với vô số hàng và cột. Sự mở rộng khác đó là tenxơ, mà có thể coi như những mảng nhiều chiều chứa các phần tử số, khi nó khác với vectơ ở chỗ vectơ là dãy các số, thì ma trận là mảng hai chiều chứa các số.[69] Ma trận với những tính chất đòi hỏi nhất định có xu hướng tạo thành nhóm gọi là nhóm ma trận.

Ma trận với các phần tử mở rộng

Bài này viết chủ yếu về ma trận mà các phần tử là số thực hoặc số phức.Tuy nhiên có thể coi ma trận với phần tử tổng quát hơn số thực hoặc số phức. Bước đầu tiên trong việc tổng quát hóa, bất kỳ trường toán học nào, tức là các tập hợp có thể thực hiện được phép cộng, phép trừ, phép nhânphép chia được xác định, có thể được sử dụng thay cho R {\displaystyle \mathbb {R} } hoặc C {\displaystyle \mathbb {C} } , như số hữu tỉ hoặc trường hữu hạn. Ví dụ, lý thuyết mã hóa sử dụng ma trận trên các trường hữu hạn. Khi xét tới trị riêng, mà chúng là những nghiệm của một đa thức mà chỉ có thể tồn tại trong một trường lớn hơn trường của các phần tử của ma trận; chẳng hạn chúng có thể là phức trong trường hợp ma trận với các phần tử thực. Khả năng để giải thích lại các phần tử của ma trận như là các phần tử của một trường lớn hơn (ví dụ để coi một ma trận thực như là một ma trận phức khi các phần tử của nó đều là thực) sẽ cho phép mỗi ma trận vuông có một tập đầy đủ các giá trị riêng của nó. Nói cách khác ta chỉ có thể coi ma trận với các phần tử thuộc một trường đóng đại số, như C {\displaystyle \mathbb {C} } , từ một tập hợp ngoài.

Tổng quát hơn, ngành đại số trừu tượng sử dụng nhiều khái niệm ma trận với các phần tử thuộc một vành R.[70] Vành là những khái niệm tổng quát hơn khái niệm trường mà trong nó không nhất thiết phải có phép chia. Phép cộng và phép nhân ma trận cũng được mở rộng ra cho tính chất này. Tập hợp M(n, R) của mọi ma trận vuông n x n trên R là một vành gọi là vành ma trận, đẳng cấu vào vành tự đồng cấu của R-mô đun Rn bên trái.[71] Nếu vành R là giao hoán, nghĩa là phép nhân của nó có tính giao hoán, thì M(n, R) là một đại số kết hợp (associative algebra) không giao hoán unita (trừ khi n = 1) trên R. Định thức của ma trận vuông trên một vành giao hoán R vẫn xác định nhờ sử dụng công thức Leibniz; ma trận là khả nghịch nếu và chỉ nếu định thức của nó là khả nghịch trong R, được tổng quát lên đối với trường F, nơi mà mọi phần tử khác 0 là khả nghịch.[72] Ma trận trên một siêu vành (superring) được gọi là siêu ma trận (supermatrix).[73]

Ma trận không phải lúc nào cũng có toàn bộ các phần tử của nó thuộc về cùng một vành – hay thậm chí trong vành bất kỳ nào đó. Một trường hợp đặc biệt nhưng hay gặp đó là ma trận khối (block matrix), mà có thể coi là ma trận với phần tử chính là những ma trận. Những phần tử này không cần thiết phải là ma trận toàn phương, và do vậy không cần phải là thành viên của một vành thông thường bất kỳ; nhưng kích thước của chúng phải thỏa mãn một số điều kiện nhất định.

Mối liên hệ với ánh xạ tuyến tính

Ánh xạ tuyến tính Rn → Rm là tương đương với ma trận m x n, như đã miêu tả ở trên. Tổng quát hơn, bất kỳ ánh xạ tuyến tính nào f: V → W giữa hai không gian vectơchiều hữu hạn có thể được miêu tả bằng ma trận A = (aij), sau khi chọn cơ sở v1,..., vn của V, và w1,..., wm của W (do vậy n là chiều của V và m là chiều của W), sao cho

f ( v j ) = ∑ i = 1 m a i , j w i khi  j = 1 , … , n . {\displaystyle f(\mathbf {v} _{j})=\sum _{i=1}^{m}a_{i,j}\mathbf {w} _{i}\qquad {\mbox{khi }}j=1,\ldots ,n.}

Nói cách khác, cột j của A biểu diễn ảnh của vj theo các vectơ cơ sở wi của W; vì thế mối liên hệ này xác định một cách duy nhất các phần tử của ma trận A. Chú ý rằng ma trận phụ thuộc vào cách lựa chọn cơ sở: chọn cơ sở khác nhau sẽ cho các ma trận khác nhau nhưng tương đương.[74] Nhiều khái niệm cụ thể nêu ở trên có thể được giải thích lại theo cách này, ví dụ, ma trận chuyển vị AT miêu tả chuyển vị của một ánh xạ tuyến tính cho bởi A, mà liên quan tới cơ sở đối ngẫu.[75]

Những tính chất này có thể được phát biểu lại theo một cách tự nhiên hơn: phạm trù của mọi ma trận với phần tử trong một trường k {\displaystyle k} trang bị phép nhân như là tổ hợp tương đương với phạm trù của không gian vectơ hữu hạn chiều và ánh xạ trên trường này.

Tổng quát hơn, tập hợp các ma trận m×n có thể dùng để biểu diễn ánh xạ tuyến tính R giữa những mô đun tự do Rm và Rn cho một vành bất kỳ R với phần tử đơn vị. Khi hợp n = m của những ánh xạ này xảy ra sẽ đưa đến vành ma trận của các ma trận n×n biểu diễn cho vành tự đẳng cấu của Rn.

Nhóm ma trận

Bài chi tiết: Nhóm ma trận

Nhóm là một cấu trúc toán học chứa một tập hợp các đối tượng cùng với một phép toán hai ngôi, tức là phép toán kết hợp hai đối tượng bất kỳ cho kết quả một đối tượng thứ ba mà tuân theo những đòi hỏi nhất định.[76] Một nhóm trong đó các đối tượng là những ma trận và phép toán nhóm là phép nhân ma trận được gọi là nhóm ma trận.[nb 2][77] Vì trong nhóm mỗi phần tử đều phải có phần tử nghịch đảo của nó, nhóm ma trận tổng quát nhất là những nhóm chứa mọi ma trận khả nghịch trong số chiều cho trước, hay còn gọi là nhóm tuyến tính tổng quát.

Bất kỳ tính chất nào của ma trận được bảo toàn dưới phép nhân ma trận và phép nghịch đảo có thể được sử dụng để định nghĩa ra một nhóm ma trận. Ví dụ, ma trận với kích thước cho trước và định thức bằng 1 tạo thành nhóm con của nhóm tuyến tính tổng quát, gọi là nhóm tuyến tính đặc biệt.[78] Ma trận trực giao xác định bằng điều kiện

MTM = I,

tạo thành nhóm trực giao.[79] Mỗi nhóm trực giao có định thức bằng 1 hoặc −1. Các ma trận trực giao có định thức bằng 1 tạo thành một nhóm con gọi là nhóm trực giao đặc biệt.

Mỗi nhóm hữu hạnphép đẳng cấu vào một nhóm ma trận, mà chúng ta có thể coi là biểu diễn chính quy của nhóm đối xứng.[80] Nhóm tổng quát có thể được nghiên cứu thông qua nhóm ma trận, mà các nhà đại số đã hiểu khá tốt về chúng, thông qua lý thuyết biểu diễn.[81]

Ma trận rỗng

Ma trận rỗng được định nghĩa là ma trận với số hàng hoặc số cột (hoặc cả hai) bằng 0.[82][83] Khái niệm ma trận rỗng giúp giải quyết với những ánh xạ có sự tham gia của không gian vectơ không (zero vector space). Ví dụ, nếu A là ma trận 3 x 0 và B là ma trận 0 x 3, thì AB là ma trận không 3 x 3 tương ứng với ánh xạ rỗng từ không gian 3 chiều V vào chính nó, trong khi BA là ma trận 0 x 0. Không có ký hiệu chung cho ma trận rỗng, nhưng hầu hết các hệ thống đại số máy tính cho phép tạo ra và thực hiện tính toán với chúng. Định thức của ma trận 0 x 0 định nghĩa bằng 1 khi xét tới tích rỗng (empty product) xuất hiện trong công thức Leibniz cho định thức bằng 1. Giá trị này cũng tương thích với thực tế rằng ánh xạ đồng nhất từ không gian hữu hạn chiều nào vào chính nó đều có định thức bằng 1, một kết quả thường được coi là một phần của đặc trưng hóa của định thức.

Tài liệu tham khảo

WikiPedia: Ma trận (toán học) http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook... http://autarkaw.com/books/matrixalgebra/index.html http://www.dotnumerics.com/MatrixCalculator/ http://books.google.com/?id=ULMmheb26ZcC&pg=PA1&dq... http://books.google.com/books?id=5GQPlxWrDiEC&pg=P... http://books.google.com/books?id=CBhDAQAAIAAJ&pg=P... http://books.google.com/books?id=jfQ9E0u4pLAC&pg=P... http://books.google.com/books?id=r-kZAQAAIAAJ&pg=P... http://www.idomaths.com/matrix.php http://www.merriam-webster.com/dictionary/matrix